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TECHNICAL PUBLICATION

ON THE CORRELATION BETWEEN MAXIMUM AMPLITUDE
AND SMOOTHED MONTHLY MEAN SUNSPOT NUMBER DURING THE RISE

OF THE CYCLE (FROM t = 0–48 MONTHS PAST SUNSPOT MINIMUM)

1.  INTRODUCTION

In the past, conventional onset for the start of a sunspot cycle has corresponded to the time when
smoothed monthly mean sunspot number (i.e., the 12-mo moving average1, 2) is at a minimum in value
(minimum amplitude). Following this occurrence, smoothed monthly mean sunspot number usually
increases in value in a straightforward way over a period of about 3 to 5 yr (on the basis of the “modern era”
sunspot cycles 10–22) until it reaches a maximum in value (maximum amplitude), its occurrence denoting
the conventional peak of the cycle. In actuality, solar minimum should be regarded as a 2–3 yr interval
when solar activity is relatively low3, 4 and, likewise, solar maximum as a 3–4 yr interval when solar
activity is relatively high.5, 6 The conventional onsets and peaks, then, occur sometime during these
extended periods of time.

It is now apparent7 that 1996 marks the minimum occurrence year for cycle 23 (based on annual
averages of sunspot number) and that cycle 23 is in its rising phase, racing towards maximum, probably in
either 1999 or 2000. While true, placement8 of its conventional onset (based on smoothed monthly mean
sunspot number) has been difficult to assign, owing to two rather unusual occurrences: First, cycle 23 is the
first cycle to have had its first occurrence of a high-latitude spot group (≥25 deg) in conjunction with a
minimum in smoothed monthly mean sunspot number (May 1996). All previous cycles have had their first
occurrence of a high-latitude spot group to precede minimum amplitude by at least 3 mo.3, 8  Second,
following minimum amplitude, smoothed monthly mean sunspot number almost always rises unabatedly
towards maximum amplitude (having positive first differences), being associated with the transition from
old to new cycle spots and the strengthening of the cycle with longer elapsed time from minimum. For the
modern era cycles 10 and 21, a slight dip is noted to have occurred in the vicinity of their respective
minimum amplitudes (occurring a few to several months after their conventional minimums), where each
dip measured about 10–20 percent larger than their respective conventional minimum amplitudes. For
cycle 23, a secondary dip, measuring only 4 percent larger (8.3 versus 8.0) occurred almost immediately
(in August 1996) following its apparent conventional minimum (May 1996); this secondary dip being
closely associated with the months of lowest monthly mean sunspot number (September and October
1996), which also were the months of greatest number of spotless days, and with the minimum in the 12-
mo moving average in number of spot groups (August 1996). Following this secondary dip, smoothed
monthly mean sunspot number (and number of groups) steadily rose, with new cycle spots finally becom-
ing the dominant contributor to sunspot area about April 1997.
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Recently, Wilson et al.9 identified several statistically important associations that relate to the size or
maximum amplitude of the sunspot cycle. Of particular interest here is the “maximum-minimum effect,”
an inferred association between the size of the cycle at maximum amplitude and the size of the cycle
at onset (i.e., minimum amplitude). Wilson et al. found that, on the basis of this maximum-minimum effect,
one could use the size of the cycle at onset to estimate the size of the cycle at maximum, typically, to within
±30 percent, whether one used all cycles 1–22 or just the modern era sunspot cycles 10–22, so named
because of the completeness of the sunspot record (i.e., they are the most reliably known). It was further
noted that cycle 19 (the largest cycle on record) deviated the most with respect to this inferred association.
Excluding cycle 19 caused the coefficient of correlation r to increase from 0.56 to 0.72 for the overall data
set (cycles 1–22) and the standard error of estimate se to decrease from about 35 to 26.

In two other papers, Wilson et al.8, 10 demonstrated that the existence of the maximum-minimum
effect, when combined with the “Waldmeier effect,” an inverse relationship between the size of the cycle at
maximum amplitude and the ascent duration,9 suggests a means whereby one can determine rather quickly
the apparent rise (i.e., fast versus slow riser) and amplitude  (i.e., large versus small maximum amplitude)
classes of an unfolding sunspot cycle. Cycles that have smoothed monthly mean sunspot number values
equal to or above the mean curve for cycles 1–22 during the early rise phase of the cycle nearly always
(10 out of 11) turn out to be fast risers (ascent duration <48 mo) of larger than average maximum amplitude
(RM ≥113.2), while cycles that have smoothed monthly mean sunspot number values below the mean
cycle curve during the early rise phase of the cycle nearly always (10 out of 11) turn out to be slow risers
(ascent duration ≥48 mo) of smaller than average maximum amplitude (RM <113.2). Furthermore, it was
found that the probable rise and amplitude classes of the unfolding sunspot cycle can usually be deter-
mined within the first 12–16 mo of the cycle. While quite useful, the technique did not yield a specific
estimate of the actual size for the unfolding cycle (i.e., its maximum amplitude), except by comparison to
the means of fast- and slow-rising cycles.8 On the basis of modern era cycles, fast risers usually have a
maximum amplitude of about 144 ± 29, while slow risers usually have a maximum amplitude of about
84 ± 17 (i.e., the bulk of the cycles have observed maximum amplitudes that lie within 20 percent of the
means). Consequently, providing that cycle 23 is a well-behaved fast or slow riser, its RM is expected to be
either <173 (fast riser) or <101 (slow riser).

In this paper, on the basis of the modern era sunspot cycles, we examine more closely the predictive
aspects of the current value of smoothed monthly mean sunspot number (i.e., the most recently available
value) with regards to the size of the later occurring maximum amplitude, from cycle onset to 48 mo into
the cycle. We show that the current value of smoothed monthly mean sunspot number during the rise of the
cycle, indeed, can be used with increasing confidence and accuracy to estimate the size of maximum
amplitude for an unfolding sunspot cycle, especially after the first 2 yr of cycle rise, and we apply this
technique to cycle 23.
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2.  THE MAXIMUM-MINIMUM EFFECT

Figure 1 displays the scatter plot of maximum amplitude RM versus minimum amplitude Rm, sepa-
rately, for the two cases of all cycles 1–22 (left) and modern era cycles 10–22 (right). In both plots, the
inferred linear regression (denoted as ŷ ) is depicted as the thick diagonal line running from lower left to
upper right. Likewise, in both plots, the inferred linear regression (denoted as ′y ) is depicted as the thin
diagonal line running from lower left to upper right for the case when cycle 19 is ignored. Ignoring cycle
19 changes the coefficient of correlation r from 0.56 to 0.72 for cycles 1–22 and from 0.47 to 0.74 for
cycles 10–22; the coefficient of determination r2, a measure of the amount of variance that the inferred
regression can explain, from 0.31 to 0.52 for cycles 1–22 and from 0.22 to 0.54 for cycles 10–22; and the
standard error of estimate se from about 35 to 26 for cycles 1–22 and from about 38 to 24 for cycles 10–22.
Furthermore, ignoring cycle 19 lowered the y-axis intercept (the first constant in the regression equation)
from about 78.0 to 67.6 for cycles 1–22 and from about 89.8 to 73.3 for cycles 10–22, and it raised the
inferred slope (the second constant in the regression equation) from about 6.0 to 6.9 for cycles 1–22 and
from about 5.2 to 6.7 for cycles 10–22.

Above each scatter plot in figure 1 is a display of the ratio of observed to predicted maximum ampli-
tude RM (from the regression fits), indicating how well the inferred linear regressions work at predicting
the size of the cycle at cycle onset (for the cases that include cycle 19). For the bulk of the samples, the
observed value of maximum amplitude is found to lie within the range of ±30 percent of the predicted
value of maximum amplitude. For the modern era cycles, we find that 10 out of the 13 cycles had a later
occurring maximum amplitude that lie within the ±30 percent range of the predicted maximum amplitude,
and although not shown, we note here that, had we chosen to ignore cycle 19, the ratio would have been
12 out of 12 cycles having their later occurring observed maximum amplitudes within the ±30 percent
range bounding their predicted maximum amplitudes. (In figure 1, SCN refers to the sunspot cycle
number.)

Because fast risers grow in sunspot number more rapidly than slow risers, there is a natural migration
of fast risers (cycles of shorter than average ascent duration that almost always are larger than average size)
to the right and of slow risers (cycles of average to longer than average ascent duration that almost always
are smaller than average size) to the left in scatter plots of RM versus R(t), where t refers to the elapsed
time from sunspot minimum. Thus, as the elapsed time from sunspot minimum becomes longer, the corre-
lation of RM versus R(t) should strengthen and the standard error of estimate, likewise, should become
smaller, indicating that we should be able to more accurately predict the size of the later occurring maxi-
mum amplitude (as the cycle gets progressively closer and closer to maximum amplitude occurrence).
In the following section, we will examine these particular issues, especially as they apply to cycle 23.
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Figure 1.  The “maximum-minimum effect” for cycles 1–22 (left) and cycles 10–22 (right). The ratio
                of observed to predicted RM (maximum amplitude) based upon the inferred regressions (top).
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3.  RESULTS AND DISCUSSION

Figure 2 displays the behavior of the coefficient of correlation r, the standard error of estimate se, the
y-axis intercept a, and the slope b of the inferred regressions during the interval of elapsed time from
sunspot minimum (i.e., t = 0) through 48 mo. Identified across the bottom are the occurrences of maximum
amplitude for cycles 10–22 (except cycles 12 and 16 which occurred later than 50 mo past minimum,
respectively, at 60 and 56 mo past minimum). Identified across the top are the levels of confidence for the
inferred regressions, where ≥90 percent indicates a marginally significant result, ≥95 percent a statistically
significant result, and so forth. Figure 2 suggests that for the modern era cycles (including cycle 19) the
inferred regressions grow stronger as the cycle progresses from minimum to maximum. From 11 mo past
minimum, the regressions are considered statistically important, and from 15 mo past minimum they are
considered very important. The inferred slope changes only slightly beyond t = 24 mo, and r is ≥0.9 for
t ≥30 mo. The standard error dips below 25 units of smoothed monthly mean sunspot number for t ≥24 mo
and below 20 units for t ≥28 mo past minimum. Table 1 lists the actual computed values for r, se, a, and b
that are displayed pictorially in figure 2, and it gives the value for the t-statistic regarding the statistical
significance of the inferred regressions, where a sample size of 13 cycles is noted to have 11 degrees of
freedom and results in the ±90-percent level of confidence being t = 1.796, the ±95-percent level of confi-
dence level being t = 2.201, and the ±99-percent level of confidence being t = 3.106.

Figure 3 depicts the scatter plots of maximum amplitude RM versus R(t) for elapsed time past sun-
spot minimum t = 12, 18, 24, and 30 mo. Clearly, as the cycle progresses towards maximum amplitude, the
inferred correlation between RM and R(t) strengthens and the accuracy of the predicted RM is much
improved, becoming quite good for t ≥24 mo. While true, it should be noted that even early on in the cycle,
when the R(t) value exceeds the median value (the thin vertical line), this can be taken as strongly indicat-
ing that the cycle will have a maximum amplitude larger than average in size, and that when R(t) is below
the median, this can be taken as strongly indicating that the cycle will have a maximum amplitude smaller
than average in size.

Figure 4 compares the ratios of observed to predicted RM for the regressions that are shown in figure
3. For t = 12 mo, 9 of 13 cycles are found to have their later occurring observed RM within the range of
±30 percent of their predicted values. For t = 18 mo, 11 of 13 cycles meet this condition. For t ≥24 mo, all
cycles (13 of 13 cycles) are found to have their observed RM within the range of ±30 percent of their
predicted values, and to within ±21 percent for t ≥30 mo.

Table 2 shows the number of cycles out of a sample of 13 cycles (i.e., the modern era cycles) that had
an observed to predicted RM ratio within the various stated bounds for t = 0 to 48 mo. It is apparent that
from about t = 20 mo, the observed RM usually (i.e., 10 or more out of 13 cycles) is found to lie within the
range of ±25 percent (or better) of the predicted value.
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Figure 2. Behavior of r, se, a, and b for t = 0 to 48 mo. Correlations are marginally significant
(≥90 percent) from t = 3 mo, statistically significant (≥95 percent) from t = 11 mo,
and so forth. The placements of RM for the modern era sunspot cycles is shown across
the bottom (except for cycles 12 and 16, which had ascent durations >50 mo).
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Table 1.  Summary of linear regression fits for maximum amplitude versus R(t) values
               based on sunspot cycle numbers 10–22.
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Figure 3. Scatter plots of RM versus R(t) for t = 12, 18, 24, and 30 mo. The diagonal lines are the inferred
linear regressions, and the thin vertical and horizontal lines are the median values for the param-
eters. The small four-squared boxes show the distributions by quadrant for each correlation.
On the basis of Fisher’s exact test for 2×2 contingency tables, we compute the probability
of obtaining the observed distribution, or one more suggestive of a departure from indepen-
dence, to be 2.5 percent.
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Figure 4. Ratio plots of observed to predicted RM for t = 12, 18, 24, and 30 mo.
SCN refers to the solar cycle number.
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Table 2.  Distribution of ratios as a function of t for sunspot cycle numbers 10–22 (N–13).
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Figure 5 displays estimates of cycle 23’s RM using two different onsets: May 1996 (the lower, heavier
line) and August 1996 (the higher, thinner line). Accepting May 1996 as the official onset for cycle 23
strongly suggests that its RM will be about the size of the mean cycle. Estimates for RM have become
progressively smaller with time for t = 0–17 mo, decreasing from about 131.7 ± 39.5 (at t = 0, with R(0) =
8.0) to 110.3 ± 33.1 (at t = 17, with R(17) = 32.0). On the other hand, accepting August 1996 as the official
onset for cycle 23 strongly suggests that its RM will be larger than the size of the mean cycle. Estimates for
RM have remained fairly stable (although there is a hint of an upward progression since about February
1997, t = 6 mo) with time for t = 0–14 mo, being about 133.3 ± 40.0 (at t = 0, with R(0) = 8.3) to 137.2 ±
41.2 (at t = 14, with R(14) = 32.0). Thus, a divergence in prediction has become apparent, which strictly
relates to the choice of onset date.

Previously, on the basis of various models and precursor techniques, it has been found that cycle 23
should be above average in size. For example, Kopecky11 and Wilson,12 on the basis of the “odd-even
effect,” have suggested that cycle 23 should have a maximum amplitude that will be larger than average in
size, probably of comparable or larger size as compared to that of cycle 22’s (RM = 158.5). Similar find-
ings have continued to be echoed.8, 13–20 In fact, a consensus prediction21 of about 160 ± 30 remains the
best guess for the size of cycle 23’s RM. Improvements in this estimate should be available later this year,
using curve-fitting algorithms (such as the one described by Hathaway et al.22).

Because the consensus is that cycle 23 will turn out to be a fast-rising, larger than average size cycle,
in contrast to a slow-rising, smaller than average size cycle, this seems to suggest that the choice of May
1996 as the official onset for cycle 23 is wrong and will lead to the specious result that its RM will be only
of about average size (i.e., the mean cycle) or, perhaps, even smaller. On the other hand, the choice of
August 1996 as the official start for cycle 23 generates a prediction that is in much better agreement with
the consensus prediction. Therefore, we suggest that for the purposes of solar activity prediction, the sec-
ondary minimum of August 1996 be used as the official (preliminary) start of cycle 23.

In conclusion, this study has demonstrated that the current value of smoothed monthly mean sunspot
number during the rise from sunspot minimum to maximum can be used to provide a reasonably accurate
estimation for the size of the later occurring maximum amplitude from a few to several years in advance of
its occurrence, being particularly useful from about 18 mo past sunspot minimum. For cycle 23, the official
start, while controversial, appears to yield estimates of RM closer to the consensus prediction when one
accepts August 1996 as the official start for cycle 23, rather than May 1996. The current estimate for cycle
23’s RM based on the described method and using August 1996 as the official start and the most recently
available smoothed monthly mean sunspot number value of 32.0 (October 1997, t = 14 mo) as the indepen-
dent variable is that it will be larger than average in size, measuring about 137.2 ± 41.2. Because there is a
hint of a rising estimate with the progression of time, it may be that our estimate will become slightly larger
over the next several months. This may be an indication that the actual value of  RM for cycle 23 will be in
the upper portion of the prediction interval. (i.e., >137.2).
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Figure 5.  Predicted RM for cycle 23 using two different onset dates: May 1996 (heavier line) and August
1996 (thinner line). An onset date of August 1996 yields estimates for RM that are in better
agreement with the consensus prediction. Please note that the actual prediction is ±30 percent
bounding the estimates.
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